If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-6y-2=0
a = 3; b = -6; c = -2;
Δ = b2-4ac
Δ = -62-4·3·(-2)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{15}}{2*3}=\frac{6-2\sqrt{15}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{15}}{2*3}=\frac{6+2\sqrt{15}}{6} $
| 4(7x-3)-6=6-4(3-7 | | 4.5x+3.5(200-x)=817 | | (9+2i)+(1–i)=8–3i | | a23=12/10+(23-1)1/2 | | 14-y =10 | | 7x2+x−30=0 | | x2+2x–15=0 | | 6(x-4)+3x=12-8 | | 6(x+4)=2(3x+5)+15 | | -6c+2=8 | | 2x(10x+2)=-3(x-1) | | 8x+10+6x=88 | | 4.5x=4x+4 | | 36x+12+12x=240 | | -15x-10x=-5 | | 15x+10x=20 | | 16r^2+24r-9=0 | | 3x/2+2-5=14-6x | | 10x+15+5x=150 | | 10y^2+15=0 | | 81+x^2=9 | | 8x=4×^2+2x | | 10^2t=20 | | 9y*2-6y+1=0 | | 4(x-2)-3=5(3-x)+1 | | 18=30/r | | (3x/5)+4=7 | | 18=30r | | 3+9x=-24 | | 5/x=30/54 | | 3/x=27/54 | | 0.3*2.2+0.7*x=5 |